
Approved for public release; further dissemination unlimited

Preprint
UCRL-JC-140415

An Adaptive Path Planning Algorithm for

Cooperating Unmanned Air Vehicles

C.T. Cunningham, R.S. Roberts

This article was submitted to
2001 IEEE International Conference on Robotics and Automation,
Seoul, South Korea, May 21-26, 2001

September 12, 2000

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

 DISCLAIMER

 This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University of
California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising or
product endorsement purposes.

 This is a preprint of a paper intended for publication in a journal or proceedings. Since changes
may be made before publication, this preprint is made available with the understanding that it will
not be cited or reproduced without the permission of the author.

 This report has been reproduced
 directly from the best available copy.

 Available to DOE and DOE contractors from the

 Office of Scientific and Technical Information
 P.O. Box 62, Oak Ridge, TN 37831
 Prices available from (423) 576-8401

 http://apollo.osti.gov/bridge/

 Available to the public from the
 National Technical Information Service

 U.S. Department of Commerce
 5285 Port Royal Rd.,

 Springfield, VA 22161
 http://www.ntis.gov/

 OR

 Lawrence Livermore National Laboratory

 Technical Information Department’s Digital Library
 http://www.llnl.gov/tid/Library.html

Submitted to the IEEE International Conference on Robotics and Automation, May 21-26, 2001, Seoul, Korea

An Adaptive Path Planning Algorithm for Cooperating
Unmanned Air Vehicles

Christopher T. Cunningham
Mail Stop L-181

cunningham2@llnl.gov

Randy S. Roberts ∗

Mail Stop L-086
roberts38@llnl.gov

Lawrence Livermore National Laboratory
Livermore, CA 94550 USA

Abstract

An adaptive path planning algorithm is presented
for cooperating Unmanned Air Vehicles (UAVs)
that are used to deploy and operate land-based
sensor networks. The algorithm employs a global
cost function to generate paths for the UAVs, and
adapts the paths to exceptions that might occur.
Examples are provided of the paths and adapta-
tion.

1 Introduction

Large networks of land-based sensors are becoming in-
creasingly important for sensing signals produced by
natural and man-made phenomena. The deployment
and operation of large land-based sensor networks can
pose difficult problems, particularly in time critical sit-
uations or in rugged terrains. An example of such
a scenario is monitoring ground conditions in a for-
est to model and predict the advance of a forest fire.
Autonomous deployment and operation of land-based
sensor networks in such a scenario is highly desirable
for maximizing sensing efficiency, while minimizing hu-
man risk.

An attractive approach to the deployment and op-
eration of a land-based sensor network is to use co-
operating Unmanned Air Vehicles (UAVs) to deploy
the sensors and then serve as communication hubs for
the sensors. In this approach, a group of cooperating
UAVs deploy sensors over a region of interest. After
the sensors have been deployed, the sensor network is
logically partitioned into sub-networks (subnets), with
one UAV assigned per subnet. Partitioning the net-

∗Corresponding Author

work into subnets allow the UAVs to service sensors
in parallel while minimizing interference or duplication
of effort. A UAV services sensors in its subnet by fly-
ing a route (path) through the subnet, uplinking data
collected by the sensors, and forwarding the data to a
central point.

In the sensing architecture described above, the
UAVs form a loosely cooperative system. Deployment
of sensors requires cooperative behavior such as fly-
ing in formation, coordinated release of sensors, and
so on. After sensor deployment, cooperation is main-
tained through the exchange of state information be-
tween UAVs. State information includes not only the
status of UAVs but also the status of sensors in the
network. Exchange of state information is necessary so
that exceptional events can be detected and properly
managed by the UAVs. As an example, consider that
a UAV is required to leave the network for replenish-
ment of fuel. The sensors in its subnet still require ser-
vicing, so UAVs in neighboring subnets must address
this requirement. In order to balance service times for
other subnets in the network, the subnet structure of
the network adapts to the loss of a UAV.

In this paper, we focus on an important aspect of
the architecture, namely the adaptive path planning
algorithm. A key requirement of the algorithm is that
it adapts the subnets (and paths through the subnets)
in response to one of four basic exceptions. The four
basic exceptions are: 1) one UAV leaves the network,
2) one UAV enters the network, 3) several sensors leave
the network and 4) several sensors enter the network.
More complex situations can be derived as combina-
tions of these basic exceptions. In the algorithm pre-
sented here, subnet and path adaptation is driven by a
global cost function that essentially shifts sensors into
and out of subnets to reach a minimum cost.

The sensor network can be modelled as a set of di-
rected graphs. In this model, the sensors in a subnet
are nodes of a graph, and the UAV path through the
subnet are directed links between the nodes. Over the
years, several approaches have been proposed to find
paths through a graph. In the robotics literature, find-
ing a path through a graph has tended to focus on the
problem of finding an open path through a graph, see
for example [1], [2] and [7]. Algorithms for such path
planning include Dijkstra’s algorithm [3], [5], and the
A∗ algorithm [6]. However, these algorithms are not
applicable to this problem as they find the shortest
path between two nodes, not a closed path.

For a single UAV, this path planning problem is the
well-known Travelling Salesman Problem (cf. [5], [8]
and [9]). Our heuristic approach, using good approx-
imate solutions and making only minor alterations to
them, is quite different from conventional techniques
which consider much more general distortions of ex-
isting paths. For example, we found that our method
performs significantly better than synthetic annealing
methods, e.g., that found in [10].

2 Adaptive Path Planning Algo-
rithm

Given N sensors and K UAVs, the adaptive path
planning algorithm generates K non-overlapping, non-
branching, closed paths to every sensor in the network.
The sensor network can be modelled as a family of
graphs {(Sk, Pk)}, k = 1, . . . ,K where Sk = {si}k, i =
1, . . . , Nk is the set of sensors in the kth subnet, and
Pk = {lij} is the set of weighted, directed links that
connect sensor si to sensor sj . Weight dij associated
with link lij is the distance between sensors si and sj .
The length of path Pk, denoted as Dk, is the sum of
the weights of the links in Pk.

It is evident that an exhaustive search through all
possible paths is O(N !). In order to lessen the compu-
tational burden, a heuristic approach to path planning
has been developed. The basis for the path planning
algorithm is the cost function

C =
K
∑

k=1

(Dk)
a (1)

In equation (1), the individual terms in the summation
are the costs that each path contributes to the total
cost. To illustrate the behavior of path planning with
this cost function, consider an incremental change of

paths resulting in changes to path lengths δDk. For
small changes, we have

δC ≈ a
∑

k

Da−1
k δDk (2)

Thus, Da−1
k is the “weight”, or cost per unit length,

of path k. Any choice of weights which is monotonic
increasing in Dk will tend to equalize the path lengths
(by penalizing very long paths). Hence, the exponent
a provides a parametric means to combine the desires
for minimum total path length and roughly equivalent
individual lengths. Values in the range of 3 ≤ a ≤ 6
have been found to work well in practice.

The adaptive path planning algorithm begins with
an initialization procedure, and then adaptively reacts
to one of the four basic exceptions. We begin by de-
scribing the initialization procedure.

2.1 Path Initialization

The initialization process consists of three steps: 1) K
subnets of sensors are formed within a network of N
sensors, 2) non-branching, closed paths to each sensor
in each subnet are constructed by minimizing the dis-
tance between sensors, and 3) paths over all subnets in
the network are balanced using cost function (1). The
details of each step are described below.

The first step of the initialization process is to con-
struct K subnets of sensors Sk, from the N sensors in
the network. The procedure is based on the K-means
algorithm with one notable exception. A K-means al-
gorithm begins by randomly selecting K vectors from
a set, and using these vectors as the initial centroids of
K clusters [4]. Clusters are formed by assigning each
vector in the set to the nearest centroid. A new cen-
troid is computed as the average over all vectors in the
cluster. This process continues until the K centroids
are fixed.

The approach taken here is similar, except that the
random initialization of the K-means algorithm has
been abandoned in favor of another approach. (The
random initialization technique in the K-means algo-
rithm was found to give poor results.) Instead, we ini-
tialized the cluster algorithm by finding sensors that
are widely separated. Begin by selecting K sensors at
random. Form a set U of the positions of these sensors,
and find the two position vectors xm, xn ∈ U that are
closest to one another. Discard one of these position
vectors, and select a new sensor (i.e., position vector)
xp 6∈ U . Continue the process until the minimum sepa-

2

ration of position vectors in U is maximized. Once the
sensors in the network have been grouped into clusters,
paths through each cluster are constructed.

Path Pk through the kth subnet is constructed from
a circumferential path around Sk which is recursively
expanded to include interior sensors using a greedy
algorithm. (Recall that a greedy algorithm selects the
optimum choice at each step, with no regard beyond
a single step.) The circumferential path around Sk is
the convex hull of Sk. As the convex hull computation
progresses, an ordered list of sensors is produced that
when linked form a circumferential path around the
subnet [11].

The circumferential path P forms the initial path
for the subnet. Denote the set of sensors that form
the convex hull of Sk as H. Observe that H partitions
the subnet into two groups of sensors: those on P , and
those interior to P . Denote the set of sensors in the
interior of the subnet as Q = Sk −H. Sensors sq ∈ Q
are added to path P in positions that minimize their
contribution to the global cost (1). The differential
cost of adding sensor sq to the path between sensors
si and sj is found by breaking link lij into links liq and
lqj , and is given by

∆diqj = diq + dqj − dij (3)

Sensors in Q are inserted into path P at the position
that minimizes (3). The process of adding sensors in Q
to the path continues in this manner until all sensors in
the subnet have been assigned a position in the path.

After paths through all K subnets have been gener-
ated, the paths are balanced using global cost function
(1). Path balancing minimizes the global costs of all
paths in the sensor network. The differential cost of
delinking sensor sj from sensors si and sk in path p
and inserting it into the link between sensors sm and
sn in path p′ is given by (cf. (1))

∆C = ∆Cp +∆Cp′ (4)

where
∆Cp = (Dp −∆dijk)

a − (Dp)
a (5)

and
∆Cp′ = (Dp′ +∆dmjn)

a − (Dp′)a (6)

If a particular combination of j, {i, k}, {m,n}, and
{p, p′} yields a ∆C < 0, then the global path cost will
decrease if the move is performed. By testing all sen-
sors in all links of all paths in the network, and mov-
ing only those sensors that decrease the global path
cost, an optimal path (and subnet) configuration is
obtained.

The initialization algorithm has been evaluated up
to several hundred sensors and sixteen UAVs. The
time required to generate a path for one UAV through
100 sensors takes about 1 second on a 450 MHz pro-
cessor. The computation scales as O(N3), but no at-
tempt has been made to improve the computational ef-
ficiency of the algorithm. It should be possible, using
simple geometric considerations, to reduce the com-
plexity to O(N) for large N . Swaps of sensors need
only be considered among nearby paths, not all paths
in the network. Examples of paths produced by the
initialization algorithm for 124 sensors and up to six-
teen UAVs are presented in a later section.

2.2 Path Adaptation

As previously described, one of four exceptions can
trigger subnet and path adaptation: 1) a UAV leaves
the network, 2) a UAV enters the network, 3) sensors
leave the network and 4) sensors enter the network.
The subnet and path adaptation schemes are detailed
below for each exception.

Exception 1: UAV leaves the network
When a UAV leaves the network, its sensors must be
reassigned to other UAVs. Hence, this exception is
identical to adding sensors to existing paths. (See Ex-
ception 4 for the procedure used to add sensors to the
network.)

Exception 2: UAV enters the network
In this exception, the objective is to assign a group
of sensors to the new UAV in an equitable manner,
while minimizing disruption to other UAVs in the net-
work. The procedure begins by selecting the path with
maximum length, and deassigning its sensors from the
associated UAV. The deassigned sensors are reformed
into two paths, one for the new UAV and one for the
deassigned UAV, using the technique described in Sec-
tion 2.1 (i.e., form two clusters of sensors, compute the
convex hulls of the clusters, and insert interior sensors
into the paths). Finally, all paths in the network are
rebalanced.

Exception 3: Sensors leave the network
The sensors are deleted from the sets of sensors in
the subnets, and the paths rebalanced. (It is quite
likely that deleting too many sensors at once, before
rebalancing, will lead to poor results. This issue has
not been investigated.)

Exception 4: Sensors enter the network
Our initial attempt was to add sensors in a greedy
fashion, using cost function (1), and then rebalance

3

the paths. It was found that this approach often leads
to obviously suboptimal paths, e.g. paths that cross
each other or themselves. Instead, greedy addition of
sensors to the nearest path (in a Euclidean sense) was
found to work well.

3 Simulation Results

Several simulation examples are provided to illustrate
the subnet and path configurations produced by the
algorithm. Figure 1 shows a sensor network of 124
randomly distributed sensors. Figures 2 through 4 il-
lustrate the flight paths of one, ten and sixteen UAVs
respectively. Note that while the number of sensors
per path is not constant in Figures 3 and 4 (the num-
ber of sensors per path varies from seven to eighteen
for 10 UAVs, and from five to eleven for 16 UAVs),
the cost per path for a given network configuration is
roughly equal.

Figures 4 through 6 illustrate the adaptation of the
sensor network to the departure of one UAV. Figure 4
illustrates a set of paths for a network of 124 sensors
(the same network as before) and sixteen UAVs. Fig-
ure 5 shows the network immediately after the depar-
ture of the tenth UAV. (The subnet for the tenth UAV
is seen in Figure 4 in the lower group of paths just right
of center.) Paths 4 and 2 each adjust their paths to
absorb the sensors in the tenth subnet. In this figure,
no other subnets have been affected. Figure 6 illus-
trates the network after the adaptation has stabilized.
Note that subnets surrounding subnets 2 and 4 have
absorbed some of the sensors in those subnets to bal-
ance the network. Only subnets (1,9) remain as they
were before UAV number 10 left the network.

4 Conclusion

An adaptive path planning algorithm for Unmanned
Air Vehicles (UAVs) in a land-based sensor network
has been presented. After initialization, the algorithm
adapts to several exceptions including the addition or
loss of a UAV, and the addition or loss of sensors.
The adaptation is driven by a global cost function that
seeks to minimize the cost associated with a given sub-
net (and path) configuration. Several examples are
presented that illustrate the path configurations pro-
duced by the algorithm as well as an example illus-
trating the adaptation of the algorithm ot the loss of
a UAV. These results indicate that good approximate

solutions to this variant of the NP-complex Travelling
Salesman Problem can be obtained efficiently com-
pared to conventional techniques.

5 Acknowledgements

This research was performed under a grant from the
Laboratory Directed Research and Development pro-
gram, Lawrence Livermore National Laboratory. The
authors would like to thank Dave McCallen, Director
of the Center for Complex and Distributed Systems,
for his support of the project. This work was per-
formed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory
under Contract W-7405-Eng-48.

References

[1] C. Alexopoulos and P. M. Griffin, “Path plan-
ning for a mobile robot,” IEEE Transactions on
Systems, Man and Cybernetics, Vol. 22, No. 2,
March/April 1992.

[2] D. Z. Chen, R. J. Szczerba, and J. J. Uhran, Jr.,
“A framed quadtree approach for determining eu-
clidean shortest paths in a 2-D environment,”
IEEE Transactions on Robotics and Automa-
tion, Vol. 13, No. 5, October 1997.

[3] E. Dijkstra, “A note on two problems in con-
nection with graphs,” Numerische Mathematik,
Vol. 1, pg. 269–271, 1959.

[4] K. Fukunaga, Introduction to Statistical Pat-
tern Recognition, Academic Press, 1990.

[5] L. Foulds, Graph Theory Applications,
Springer-Verlag, 1992.

[6] P. E. Hart, N. J. Nilsson and B. Raphael, “A for-
mal basis for the heuristic determination of min-
imum cost paths,” IEEE Transactions on Sys-
tem Science and Cybernetics, Vol. 4, No. 2,
July 1968.

[7] Y. K. Hwang and N. Ahuja, “Gross motion
planning—A survey,” ACM Computing Sur-
veys, Vol. 24, No. 3, September 1992.

[8] S. Lin, "Computer solutions of the travelling
salesman problem," Bell Systems Technical
Journal, Vol. 44, 1965.

[9] E. L. Lawler, et. al., The Travelling Salesman
Problem, Wiley-Interscience, New York, 1985.

[10] W. H. Press, et. al., Numerical Recipes in C,
Cambridge University Press, 1988.

[11] J. O’Rourke, Computational Geometry in C,
Cambridge University Press, 1993.

5

Figure 1: Sensor network of 124 randomly distrib-
uted sensors

Figure 2: Path through the sensor network for one
UAV

Figure 3: Paths and subnets for ten UAVs Figure 4: Paths and subnets for sixteen UAVs.

9 5

7

1

8

6

13 15 0

12

14

11

2

3

4

9

1

8 4 2 14

12

01513

6

3

7

5

11

Figure 5: Path rearrangement after the departure of
the UAV for subnet number 10.

Figure 6: Final path and subnet configuration after
the departure of the UAV.

1

0

2
3

4

5

6

7

8

9

10

11
12

13

14

15

